
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

01 VLSI Memo No. 89-552 S "
00 June 1989 0 8

Retrieving and Integrating IC Fabrication Data from Dissimilar Databases

S Michael P. Ruf

O Abstract

Factory personnel need to access data from many aspects of the fabrication environment.
Many IC fabrication facilities store manufacturing data in distributed, heterogeneous
database networks. Retrieval and integration of data can be a cumbersome task due to this
configuration. The ideal solution to these problems is to standardize a data model, storing
the manufacturing data in a single database. However, since such a standardization is not
likely to occur in the near future, a more immediate solution is needed. This article
discusses a system addressing these problems: DRIFS - A Data Retrieval Interface for
Integrated Circuit Fabrication Systems. A uniform query interface and data model is defined
for heterogeneous, distributed fabrication databases. A DRIFS prototype is described and
evaluated.

* 899 01 022
esea':- Ce'e, rs: ":e'.1-a e:s 617 253-2138

29-32. 02'29

Acknowledgements

This research was supported in part by the Defense Advanced Research Projects
Agency under contract number MDA972-88-K-0008.

Author Information

Ruf, current address: Rational, 3320 Scott Blvd., Santa Clara, CA 95054-3197.
(408) 496-3600.

Copyright* 1989 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy
is for private circulation only and may not be further copied or distributed, except
for government purposes, if the paper acknowledges U. S. Government sponsor-
ship. References to this work should be either to the published version, if any, or
in the form "private communication." For information about the ideas expressed
herein, contact the author directly. For information about this series, contact
Microsystems Research Center, Room 39-321, MIT, Cambridge, MA 02139;
(617) 253-8138. 0

Retrieving and Integrating IC Fabrication Data -- Q f -
from Dissimilar Databases C--I

L, 1(TAO
by U, jLriotinced I

Michael P. Ruf JI;:tacatfl

Massachusetts Institute of Technology
Cam bridge, M A 02139 cSJby- .

June 7, 1989 Avc ---ty

Dist Avjij a,,

Abstract
Factory personnel need t, access data from many aspects of the fabrication environ-
ment. Many IC fabrication facilities store manufacturing data in distributed, heterogeneous
database networks. Retrieval and integration of data can be a cumbersome task due to
this configuration. The ideal solution to these problems is to standardize a data model,
storing the manufacturing data in a single database. However, since such a standardization
is not likely to occur in the near future, a more immediate solution is needed. This article
discusses a system addressing these problems: DRIFS - A Data Retrieval Interface for In-
tegrated Circuit Fabrication Systems. A uniform query interface and data model is defined
for heterogeneous, distributed fabrication databases. A DRIFS prototype is described and
evaluated.

1 Introduction

With the growing complexity of integrated circuit processes, the increasing number of
technologies and product lines, and the relentless demand for higher volumes, commer-
cial IC fabrication is increasingly dependent on information management. Information is
collected from almost every aspect of the manufacturing process. Financial, marketing,
design, engineering, production, scheduling, resource management, parametric, and con-
trol information all contribute to a vast collection of fabrication data. To maintain high
productivity, IC manufacturers must draw on technical, historical, and corporate data at
all levels of the fabrication process. More importantly, this data must be integrated and
easily retrievable.

The past decade has seen the growth of commercial MIS systems for fabrication data.
These systems are responsible for handling information for all aspects of the fabrication
cycle, from design through packaging. However, in most cases, the systems are piecemeal,
covering only a particular stage or aspect of the fabrication process. For example, separate
computers and software are commonly used for logic design, process design, scheduling,
fabrication, and facility support. Because these systems do not share data or communicate
efficiently with each other, they do not support integration of data at a global level.

* Furthermnr, these large conglomerations of data are not always equipped with efficient
retrieval interfaces. Due to the magnitude and complexity of such systems, often only

1

highly trained individuals can access and interpret the data. Improving the inadequacies
of existing IC fabrication management systems will be a key factor in adapting to the
growing information needs of factories of the future.

2 Fabrication Data in Heterogeneous Databases

The majority of the fabrication data is usually managed by a shop floor control (SFC)
system. Several shop floor control (SFC) systems for IC fabrication are in use today.
PROMIS' and COMETS2 , the two leading commercial manufacturing systems use table-
based databases. SFCs normally handle a major portion of the information needs for a
particular facility, but concentrate on data directly associated with the operation of the
IC plant. This data can be separated into three major categories: facilities, engineering,
and lot tracking/history.

Supplemental systems are used to collect and manage additional information not cov-
ered by shop floor control systems. Such systems might specialize in the following areas:
testing/yield, scheduling, equipment maintenance, equipment control, financial/ marketing,
and facility support. The shop floor databases and the databases which store additional
manufacturing data will be referred to as local databases. Often, users want to perform
queries which draw on data from two or more of these local databases. How these queries
are accomplished is an integration issue. One common method of integrating the data is
to download information from supplemental databases into the main shop floor control
database. This method has a number of disadvantages:

" Any outside information integrated into the SFC system must conform to the struc-
ture of the SFC database. If this structure cannot accommodate a certain data
model, part of the data may be forfeited in converting to a suitable model.

" Integration is not real-time. An intermediate program "',,qt port the data from sup-
plemental database to an SFC database. Queries may gene, .,e outdated information
because the intermediate program can only be run perio .lly.

9 As applications change, or new applications are written, integration needs may
change. To restructure the integration model, the schema of the SFC databases
must be modified. This is a high overhead procedure. Therefore, this integration
method is not dynamic with regard to information needs.

" Because all access to integrated information must be through the SFC system, the
demands on the system increase as more information from other databases is dupli-
cated in the SFC databases to support integration.

'PROMIS is a registered trademark of PROMIS Systems Corporation.
'COMETS is a registered trademark of Consilium, Inc.

2

Because different people associated with the fabrication process may want access to
* different types of information, it is helpful to categorize these people into several groups

with similar information needs. A typical breakdown is: equipment operators, engineers,
manufacturing managers and supervisors, quality control personnel, production planners,
support and maintenance personnel, and top level managers. Most shop floor control
systems provide reports tailored for certain groups listed above, but cannot provide each
group with a separate "view" of the underlying schema. Hence, new reports are difficult
to generate, since retrieval interfaces are not designed to address the specialized interests
of each group.

3 Multi-database Techniques

There are two prevalent approaches to integrating MDBSs. One approach is to provide
a global schema which defines an integrated view of all data[1],[2],[3,[4],[5],[6],[7]. Under
this configuration, the details of the local databases are hidden from the global user, who
conceptually manipulates a classical homogeneous database. The second approach is to
require explicit manipulation of the local databases, but provide mechanisms for sharing
information between them[81491110.

An advantage of the global schema approach is that the LDBs can retain complete
autonomy. Furthermore, retrieve-only integration of existing databases can be achieved
without modifying or extending their schemata or functionality. Integrated update under
the global schema configuration is a more complex issue, since update instructions must be
applied to the global schema, presenting open problems associated with concurrency and
redundancy. Several retrieve-only interfaces to MDBSs have been designed to generally ad-
dress issues of the global schema approach. Among these are Multibase[1], Sirius-Delta[4],
Mermaid[5], R*[6], and Gestalt[7i.

Multibase, developed by the Computer Corporation of America, is centered around the
ADAPLEX13 database language, also developed by CCA. Multibase is designed to accom-
modate a broad range of data models in the underlying local databases. To accomplish
this, it uses its own DBMS (the "Local Data Manager") to manipulate and process data
from the LDBs. Sirius-Delta, a prototype sy3tem developed at INRIA, aims to allow users
to manipulate existing distributed data as a unique database. It is implemented using
the existing services of the LDBs. Mermaid, developed at Unisys Corporation, is intended
for relational database management systems and uses existing DBMSs to manipulate and
process the LDB data. R* is a prototype designed at the IBM Almaden Research Center
to support transparent access to distributed relational databases through an extension of
SQL. Gestalt is the central information-support system for the CAF Project (Computer-
Aided Fabrication of Integrated Circuits) at M.I.T. It is designed to support read/write
access to a broad range of underlying data structures, from conventional objects like per-
sonnel and machine records to unconventional objects like wafer models, IC masks, process
flow programs, etc.

3

The integration of MDBSs can be accomplished in two stages[1],[4],[51. First, a uni-
form data model and query interface are provided for retrieving data from each of the
local databases. Second, an integrated representation is defined to allow access to multiple
local databases via a single global query. This two-stage appreach generally requires at
least one new schema to be defined using the uniform data model for each of the existing
LDBs These Pec% schemata provide homogeneity, since each of the heterogeneous LDBs
are represented at this level using the same data model. Once the LDB schemata have
been expressed in the uniform data model, a global schema can be built to integrate the
data. The user may then submit queries in terms of the global schema, which conceptually
represents an integrated homogeneous database. Executing these global queries involves
solving several problems, including: query decomposition and optimization[5, query trans-
lation from the uniform data nodel to the individual data models of the LDBsJ2J, resolving
semantic conflicts!']!, providing sufficient concurrency control, and adequate performance.

4 A Testbed for Integrating Heterogeneous Fabrica-
tion Databases

The Texas Instruments Dallas Logic II (DLOG-II) IC fabrication facility was used as a
testbed for a prototype implementation of DRIFS. At the time of the research DLOG-II
was a low volume, fast turn-around manufacturing facility. A significant amount of manu-
facturing was dedicated to special work requests such as process development experiments.
Because of the developmental nature of lot fabrication at DLOG-II, the make-up of the
fabrication data emphasized engineering and parametric data rather than financial and
planning data. The main computing resource at DLOG-II was a VAX 8650 running at 6
MIPS with 128 MB of memory, managing the following databases:

" PROMIS. The shop floor control database. By far the largest and most involved
system, demanding a major portion of the computing time.

" Engineering Test Database. Stores test results from various integrated circuit
test equipment.

" Engineering Data Collection Database. Stores supplemental engineering infor-
mation used for generating charts and trend analysis.

Additionally, DLOG-II maintained several supplemental databases on mainframe, mini-
and microcomputers. These include a facility support/control system, equipment control
and particle monitoring databases. Representations of the DLOG-II PROMIS Database
and the Engineerirg Test Database were defined in a DRIFS prototype. Since DLOG-II does
not maintain a financial database, a simple mock one was created with Ingres, a relational
database management system. The financial database was created on a VAX 785 running

41

ULTRIX 3 , an implementation of UNIX 4 commonly used on DEC equipment. A separate
computer and operating system were chosen for the financial database to demonstrate
how DRIFS would perform in a distributed hardware and heterogeneous operating system
environment.

4.1 Structure and Content of PROMIS Database

The PROMIS database consists of about 30 internally managed ISAM S files[11]. Most of
the data they manage can be divided into three categories: facility information, engineer-
ing, and lot tracking and history.

The most extensive and significant facility information is stored in four hierarchically
related tables describing production areas, work centers, equipment types and equipment
units. Production areas are groups of work centers. Work centers and equipment types
are groups of equipment units.

Most of the engineering data in PROMIS is associated with IC process specification.
PROMIS records processing instructions defined by engineers and relays it to operators or
automated fabrication equipment. PROMIS breaks down process specification into four
levels of detail: device, process, recipe and operation. The device is at the top of the
hierarchy, providing the most general information. Each of the next levels incorporates
a greater amount of detail regarding manufacturing specifications for the device. The
operation is at the bottom of the hierarchy, giving the highest level of detail. Once all the
necessary modules have been defined, they are combined to from a complete manufacturing
process flow.

Device records most commonly describe summary level instructions for fabricating man-
ufacture IC's. The information in a device record can be divided into 3 major categories:
administrative, parametric, and instructional. Administrative data contains descriptive
information such as dates, the device record's history, personnel associated with the de-
vice, categories, etc. Parametric data consists of parameter names and values. Parameters

may specify such things as lithography masks, probe tests, equipment settings, etc. They
allow a general description of a device type to be tailored for specific devices. Instruc-
tional data describes the manufacturing flow for the device. Instructions can specify how
to start making a device, specify a process flow, describe inventories for the device, or
describe a "nested" device. All devices have an instruction of the first type, and most have
a final inventory instruction. Some devices, such as purchased parts, do not have process
instructions. Table I describes some of the fields composing the DEVC record.

PROMIS process records provide a higher level of detail than the devices which ref-
erence them. Several different devices may reference the same process. In this situation,

3 ULTRIX is a registered trademark of Digital Equipment Corporation.
4 UNIX is a registered trademark of AT&T.
5 Indexed sequential access method.

Field Name Type Description
ACTIVFLG Char. Flag indicating whether this is the active version of the device.
DEVFUNCNAME Char. Name of the Device.
FROZEN Byte Flag indicating whether device can be modified.
PRODSTATUS Char. Status code indicating availability of device for production.
CREATEDT Date Date and time when this device record was created.
ACTIVEDT Date Date and time when this device record was made active
CHANGEDT Date Date and time of last modification to this device.
DESCR Char. Textual description of device.
INSTCOUNT Integer Number of instructions in the device record.
INSTTYPE Char. Array Instruction type (starting material, process, inventory, etc.)
INSTCOMMENT Char. Array Comment for instruction.
INSTPROID Char. Array Process ID used when instruction type is PROCESS.
INSTINVENTORYID Char. Array Inventory ID used when instruction type is INVENTORY.
NENGPARMS Integer Number ot engineering parameters for this device.
NPLANPARMS Integer Number of planning parameters for this device

PARMNAME Char. Array Device parameter name.

PARMVAL Char. Array Device parameter value.

Table 1: Description of Selected Fields in the PROMIS Device Record.

each device applies its own set of devices parameters to the process. Different sets of pro-
cesses are defined for each type of IC (e.g. CMOS, NMOS, PMOS, BIPOLAR). Processes

typically have between 50 and 100 steps, each one naming a recipe to be used at that point.
A recipe outlines a sequence of operations on a lot at a particular work center on a partic-
ular equipment type. Each step, or operation of a recipe describes a set of actions to be

performed by equipment operators. Operations are the most detailed building blocks for
processing specifications. They contain parametric and textual instructions for operating
fabrication equipment.

PROMIS continually collects information o~n each lot as it is processed. This informa-

tion, called lot data, is stored in two files: the active lot file and the lot history file. The
active lot file contains one record for each lot, describing what is currently happening to
the lot. Active lot records are updated at each work center. The lot history file stores an
account of what happened to a lot at each step of processing. Each time a lot is tracked

into a new work center, lot history entries are recorded.

4.2 Structure and Content of Engineering Test Database

The engineering test database (TDB) was designed and implemented by DLOG-II to man-

age controltest data from IC test equipment. Each kind of tester at DLOG-II produces a
different type and format of data. In fact, data formats can change from session to session

on the same tester. The engineering test database consolidates the floating format test
data from all the machines, and provides a standard query mechanism to the data.

6

The TDB is stored in VAX datalog format. Datalog files are composed of sequential
ASCII variable length text records. There is one datalog file for each test session performed
on each lot by each tester. The ASCII datalog files contain Lhree types of records: data,
header and format. There are two types of data records: test session data records, and test
value data records. Test session data records contain the information necessary to locate

a set of test data for any given wafer. Test value data records contain the test results for

a given test session. A single test session data record precedes each set of test value data

records. Header records define a format for the test session records. Format records define

the format for test value data records. They specify field names which describe the values

in the data records that follow. Figure 1 is an example of a datalog TDB file with header,

format, test session data, and test value data records.

HDR1 TESTER TECH DEVICE LOT WAFER TEMP STATUS TEST-DATE TEST-TIME

FMT2 SUPPLY

FMT3 ICC2 ICC3 ICC5 VIL VIH VOH VOL

DATI SENTRYS0 DM05 DPU-1 137380 23 25C PREBURNIN 861231 14:49:34

DAT2 LHH
DAT3 832.OE-03 -2.OOOE-03 174.14E-03 1.399 1.99 1.988 338.1E-03

DAT3 821.OE-03 -2.OOOE-03 175.14E-03 1.320 1.98 1.981 340.2E-03

Figure 1: Example of a TDB file.

0
4.3 Structure and Content of Financial Database

Because DLOG-II does not maintain a networked financial database, a small database

was created using one Ingres relation. The relation stores fictional flow cost and yield

data associated with each device. The relation used to store the data is composed of the

following domains:

* devid. Device ID.
* nobars. Number of bars, or die, per slice.

* cqflowcost. Average flow cost per slice for the current quarter.

* cqyld. Average yield for the current quarter.

* pqflowcost. Average flow cost per slice for the previous quarter.

• pqyld. Average yield for the previous quarter.

The the values for the devid field were chosen to match the DEVNAME field 6 from

selected devices in the PROMIS database. The values for the remaining fields were supplied

by the modified cost data.

See Table 1.

4.4 Retrieval Mechanism for PROMIS

A PROMIS module, DATALINK, allows extraction and manipulation of data from any
?RCMIS file. Once selected, the DATALINK menu provides general extraction functions
as well as data conversion functions. The General extract function provides an interactive
method of retrieving data from individual PROMIS files. The extracted data is stored in
an asuvii work file in the user's PROMIS directory.

After initiating the General extract function, the user must specify extraction and
search criteria. The extraction criteria identify the fields in a particular file to be extracted.
while the search criteria, or query constraints, specify which entries to extract. Search
criteria are entered as a field name, a relational operator, and a value. Once the extraction
is complete, PROMIS can convert the work file to several different formats, including the
standard data interchange format (DIF).

4.5 Retrieval Mechanism for the Engineering Test Database

The engineering test database provides a program, TDBEXTR, to extract data. The
extract criteria, or query constraints, can be entered from the VMS command line. TD-
BEXTR generates three output files: a description file, a data file, and a log file. The
extract criteria are specified using a simple extract language. Each criterion begins with
a field name and is followed by a list of values for that field, enclosed in parenthesis. The
values can be singular, a list separated by commas, a range separated by two periods, or
a wild :ard expression.

4.6 Retrieval Mechanism for the Financial Database

Data is retrieved from the financial database using QUEL[121, the standard query language
for Ingres. Query constraints in QUEL are called clauses. Each clause consists of a pair
of expressions separated by a comparison operator. Basic queries can be formulated using
only constant and attribute expressions. Attributes take the form variable.domain, where
vartable specifies a particular relation, and domain identifies a field in that relation. A
typical clause might consist of an attribute followed by a comparison operator followed by
a constant. For example, cost.nobars < 200 identifies the Cost Relations in which the field
nobars contains a value less than 200. QUEL clauses can be linked together with logical
operators (and, or, not) to form a qualification. An Ingres retrieve command specifies the
relation and domains to extract from each tuple, as well as a qualification indicating which
tuples to retrieve. Normally, Ingres will print the results of the query on the screen, but an
optional argument to the retrieve command can specify a new relation to hold the output
data. Ingres also provides a copy command to port data from an ingres relation to an
outside file.

SO

5 Overview of DRIFS

DRIFS131 is a retrieve-only interface to heterogeneous, distributed fabrication databases.
It is designed using the global schema approach to provide an integrated data represen-
tation without requiring changes to the existing local databases. It provides a software
environment on a separate computer system, defining and storing a representation of each
fabrication database. Using those representations, it generates queries particular to each
fabrication database and retrieves data from them via computer networks.

5.1 DRIFS Schema Levels

In order to separate the tasks of providing homogeneity and integration, DRIFS breaks
data acquisition into three levels: the local database level, the primitive level, and the user
level. The local database level consists of the shop floor control system database and the
supplemental databases.

For each local database schema, the primitive level stores a translation to the DRIFS
data model. In answering queries posed at the primitive level, data is transferred from the
underlying local database level through various networking techniques. The primitive level
provides homogeneity, because it essentially maps each data model of the heterogeneous
local databases to the uniform DRIFS data model. This is an involved task, since many
issues must be considered, such as computer networking, data models and query languages
at the local level, and data formats of output files at the local level. While data represen-
tations from separate local databases are all stored using the DRIFS data model, they are
not integrated at this level.

Once the data has been mapped to the uniform data model of the primitive level, it can
be integrated at the user level. This level combines representations from the primitive level
to allow data from various local databases to be integrated in common structures. User
level data representations can be tailored for specific groups such as planners or engineers,
allowing each group to have separate "views" into the primitive level.

5.2 DRIFS Data Structures

The DRIFS data model is expressed as primitive structures, which are templates for data
retrieved from the local databases. Each structure consists of several titled slots where
atomic data is stored. Each slot is defined with the following fields: slot name, slot type,
list singleton identifier. The slot name describes what kind of data is stored in the slot,
the slot type specifies what format the data is stored in (i.e. string, number), and the
list,'singleton identifier indicates whether the data is stored as a list of values or as a single
value. Associated with each primitive structure is information specifying from which local

* database to retrieve its data and how to query that database. This information indicates
in which relation, file, record, etc. the data is stored. It also defines a variable map linking

9

each s'ut in the primitive structure to a particular field in the local database. Primitive

structures are grouped by local database, and the collection of all primitive structures for
a particular local database makes up DRIFS's representation for that database.

The user level provides the means for integrating related data from each local database.
User level structures combine data from the primitive structures by incorporating relevant

slots frofT each primitive structure. The primitive structures which comprise a particular
user level structure must have at least one slot in common. These key slots are used to
combine the results of primitive level queries.

6 The DRIFS PI'ototyp? Implementation

DRIFS was prototyped on a Texas Instruments Explorer LISP machine. The Explorer is
a single-user workstation designed for rapid development and prototyping in a symbolic

processing environment. Running Common LISP with incremental garbage collection,

the Explorer can manage up to 128 megabytes of virtual memory. The internal Nubus
architecture uses a 32-bit LISP processor running at 10 megahertz (100 ns clock period).

An ethernet controller is provided for communications with local area networks. The

Explorer provides several networking services, including transparent file I/O, remote login,
and task-to-task communication. To support these services, the Explorer uses the multiple

communication protocols. Figure 2 shows the networking configuration for the Explorer

used to prototype DRIFS. The networking names of the machines are shown in parenthesis.

6.1 DRIFS Software Epvironment

The DRIFS prototype was implemented using windows and pop-up menus in which prim-
itive and user level structures are created and manipulated. To define a structure, the
user specifies a DRIFS structure name, a iocal database. a query type for that database,

and each slot in the structure. DRIFS then creates a LISP flavor as a template for data

retrieved from the local databases. When data is retrieved from a local database it is
parsed into primitive structures, and stored in flavor instances for later viewing.

DRIFS identifies a set of query types associated with each local database: PROMIS,
engineering test, and financial. Ideally, only one query type would be needed for each

database. However, since the file structure for the PROMIS database is not consistent,

a separate query type was defined for reading files with multiple record types. Slots are

defined by specifying a slot name, slot type, and list/singleton specifier. The slot name is

used only by DRIFS as a reference and the slot type indicates the type of data which will
be stored in the slot.

Once the primitive structure has been defined, the user must create a mapping which
associates each slot in the structure with a specific field in the PROMIS database file.

The PROMIS fields are selected using pop-up menus. Since PROMIS treats array fields

10

VAX: VMS[
(Exgefe) I

(DECnet

VAX: VA: M
Ultrix (A1l41)] DE net Other

(Tilde) Explorers

~ ~~(Espresso) hont

Other YUnix Other

rachines ? Machines

Figure 2: Partial schematic representation of Ethernet network at TI
Computer Science Center

The networking name of each computer is shown in parenthesis.

11

differeintly from other fields, they must be handled specially by DRIFS. When an array
field is selected in a mapping, DRIFS asks for the maximum number of elements to retrieve
from the array and for the PROMIS field which specifics exactly how many elements are
in the array.

User level structures combine slots from primitive structures, allowing data from sep-
arate databases to be integrated in a common data model. They are created using pop
up menus that specify the component primitive structures and which slots to include from
each one. One slot from each primitive structure must be identified as a key slot. DRIFS
expects the data in key slots to be stored in the same format across primitive structures.

6.2 Retrieving Primitive Level Data

To initiate a DRiFS primitive level query, the user selects a primitive structure to retrieve
and specifies the search criteria (known to DRIFS as query constraints) via pop-up menus.
Once the query constraints have been specified by the user, DRIFS translates them into the
query language of the local database and issues them to the server for that database. Two
methods were evaluated for communicating query commands to local database servers:
remote batch jobs and ascii-translating character streams.

Batch jobs have the advantage of standard handshaking provided by the network pro-
tocols, allowing for better handling of error conditions, and less programming overhead.
However, response time for batch jobs can be unacceptably slow, depending on the con-
figuration of the host computer. For example, EXGEFE (the host computer for PROMIS
and the engineering test database at DLOG-II) gives batch jobs minimal priority at peak
computing hours. In fact, during certain times of the day, batch processing virtually stops
until the computing load is relieved. Another disadvantage to remote batch jobs is that
they must initiate and release a new process each time a retrieval is requested. A large
portion of the time it takes to run a PROMIS query is consumed in getting to the proper
PROMIS menu and exiting the system. With batch jobs, this must be done each time a
query is run.

In contrast, an ascii-translating character stream is a direct connection to another
computer via remote login. The stream has an output buffer through which a program
can send commands to the remote host as if a user were typing them. The output from
the host is piped into the stream's input buffer where it can be interpreted by DRIFS.
Ascii-translating character streams have the advantage of efficiency but are more prone
to unanticipated errors. ':or example, if the host broadcasts a system message to all
users, DRIFS may not know how to interpret that message, or, if a process times-out or
aborts for any reason, DRIFS may continue to send commands to the non-existent process,
not knowing it has been deactivated. Also, if a stream has been inactive for a certain
length of time, the remote login session may terminate automatically in what is called
an autologout. Although procedures may be included to detect and recover from such
conditions, it is difficult to anticipate all failure modes.

12

Ascii-translating streams were used to communicate with the PROMIS and the engi-
* neering test databases on EXGEFE, and batch jobs were used to communicate with the

financial database on TILDE. Batch jobs were acceptable for TILDE because even at high
system load, there was little or no time between queuing and execution. Since direct net-
work connections for ascii-translating streams may not exist from the retrieval computer to
the local host, DRIFS defines a connection path which lists the hosts, or connection nodes,
leading to the desired host. The ascii-translating character stream must login to each node
separately until it reaches the desired host. The connection nodes hold the information
necessary for login at each host.

6.3 Retrieving Primitive Structure Data

Note from Figure 2 that there is more than one network path between ESPRESSO and
EXGEFE. To generate a retrieval connection, ESPRESSO can use DECnet expressly to
connect to the local router, and then to EXGEFE, or it can use TCP/IP to connect to
ALL41 and then login to EXGEFE through DECnet. Because the Explorer provides more
comprehensive and reliable support for TCP/IP streams, connection nodes were defined
to use the latter path.

To minimize use of the character stream, DRIFS writes its queries to a script file on
EXGEFE and uses the stream only to activate and monitor the progress of the script' command. Due to a problem with the Explorer implementation of DECnet, files longer
than about 600 bytes could not be transferred directly from ESPRESSO to EXGEFE. To
work around this problem, script files were transferred indirectly to EXGEFE via ALL41.
Each script file includes commands to perform the specified query and to convert the
PROMIS output file into DIF format. Using DECnet, the DIF file is then read from
EXGEFE and parsed into primitive structures.7

DRIFS uses a separate character stream connected to EXGEFE to query the engineering
test database. This character stream communicates at the VMS command level, passing
query constraints to the extract program (TDBEXTR) from the command line. Using
DECnet, the description file is then read to identify the format of the data file. Then, the
data file is read and parsed into primitive structures.

To query data from the financial database, DRIFS creates on TILDE a script file con-
taining Ingres commands. A batch file is used to load Ingres and activate the script, which
retrieves the requested fields and copies them to an output file. DRIFS reads the output
file from TILDE, parsing the data into primitive structures.

The Explorer DECnet failed only when transferring files to EXGEFE. Therefore, DECnet could be used
to transfer the DIF file directly from EXGEFE to ESPRESSO.

13

6.4 The User Level Interface

6.4.1 Combining PROMIS and Financial Data

To describe the DRIFS user level interface, an example user level structure, FIN-DEVICE,
will be used. It combines data from two primitive level structures: DEVICE from PROMIS
(Figure 3) and DEVICE-COST-DATA from the financial database (Figure 4).

FIN-DEVICE (Figure 5) incorporates fields from it component primitive structures
which might be of interest to a production planner. Thus, retrieving FIN-DEVICE struc-
tures requires data to be integrated from PROMIS and the financial database.

DRIFS divides a user level query into separate primitive level queries and uses the
key slots to match corresponding results from each query. For example, to view all FIN-
DEVICE's with device ID's beginning in "ASAM", DRIFS would perform two separate
primitive level queries. First it would retrieve device data from PROMIS by querying
all DEVICE structures with NAME's beginning in "ASAM". Then it would retrieve cost
data from the financial database by querying all DEVICE-COST-DATA structures with
NAME's beginning in "ASAM". At this point, DRIFS compares the data in the key slots (in
this case, the NAME's) to match each DEVICE structure with its corresponding DEVICE-
COST-DATA structure. Once these primitive structures are paired up, each pair is com-
bined to form a FIN-DEVICE structure.

In the preceding example, the query constraints concerned the key slots of the DE-
VICE and DEVICE-COST-DATA structures. If no key slot was included in the con-
straints, the user level query would be handled differently. For example, to retrieve all

FIN-DEVICE structures with current quarter yields less than 40%o, DRIFS would first
retrieve all DEVICE-COST-DATA structures from the financial database with current
quarter yields less than 40%. Then, it would use the data in the DEVICE-COST-DATA
key slots (in this case, the NAME's) to build the query constraints for the DEVICE
structure. DRIFS would use those query constraints to retrieve from PROMIS a matching
DEVICE structure for each DEVICE-COST-DATA structure it has already retrieved from
the financial database. The pairs are then combined to form FIN-DEVICE structures.

6.4.2 Combining PROMIS and Engineering Test Data

Integrating data from PROMIS and the engineering test database cannot be handled the
manner described in Section 6.4.1, because there is not a one-to-one correspondence be-
tween PROMIS entries and entries in the test database: For each lot in PROMIS, there
are several entries in the entries in the test database; for example, suppose the user wants
to combine data in the ACTIVE-LOT primitive structure from PROMIS (Figure 6) and
the LOT-TEST-RESULT primitive structure from the engineering test database (Fig-

ure 7). There are many LOT-TEST-RESULT's which correspond to each ACTIVE-LOT.
To handle this situation, DRIFS allows user level structures to identify sub-structures. Sub-
structures are primitive structures, such as LOT-TEST-RESULT, which have a many-to-
one correspondence to other primitive structures, such as ACTIVE-LOT. The user level

14

DEVICE (PROMIS)
NAME: string SINGLETON

DESCRIPTION: string SIN4GLETON
ACTIVE: string SINGLETON

FROZEN: number SINGLETON
STATUS: string SINGLETON

CRrATE-DATE: string SINGLETON
ACTIVE-DATE: string SINGLETON

LAST-MOD-DATE: string SINGLETON
INSTRUCT-TYPE: string LIST

INSTRUCT-COMMENT: string LIST
INSTRUCT-PROC-ID: string LIST

INSTRUCT-INVENT-ID: string LIST
NO-ENG-PAR.AMS: number SINGLETON

NO-PLANNING-PARAMS: number SINGLETON
PARAM-NAME: string LIST

PARAN-VALUE: string LIST

Figure 3: Description of DEVICE primitive level structure.

DEVICE-COST-DATA (FINANCIAL-DB)
NAME: string SINGLETON

BARS-PER-SLICE: number SINGLETON

CUR-QTR-FLOW-COST: number SINGLETON
CUR-QTR-YIELD: number SINGLETON

PREV-QTR-FLOW-COST: number SINGLETON
PREV-QTR-YIELD: number SINGLETON

Figure 4: Description of DEVICE-COST-DATA primitive level struc-
ture.

15

FIN-DEVICE

Slot.:
NAME (from DEVICE)

DESCRIPTION (from DEVICE)
ACTIVE (from DEVICE)

FROZEN (from DEVICE)
STATUS (from DEVICE)

CREATE-DATE (from DEVICE)
ACTIVE-DATE (from DEVICE)

LAST-NOD-DATE (from DEVICE)
BARS-PER-SLICE (from DEVICE-COST-DATA)

CUR-QTR-FLOW-COST (from DEVICE-COST-DATA)
CUR-QTR-YIELD (from DEVICE-COST-DATA)

PREV-QTR-FLOW-COST (from DEVICE-COST-DATA)
PREV-QTR-YIELD (from DEVICE-COST-DATA)

Key Slot.:
NAME (from DEVICE)
NAME (from DEVICE-COST-DATA)

Figure 5: Description of FIN-DEVICE user level structure.

structure, ENG-ACTIVE-LOT (Figure 8), incorporates slots from ACTIVE-LOT which
are of interest to an engineer. It also incorporates lot test data associated with each active
lot by identifying LOT-TEST-RESULT as a sub-structure.

7 Evaluations

7.1 Evaluation of DRIFS Prototype Implementation

The DRIFS prototype is successful in providing a standard data model and a simplistic
retrieval interface to data in heterogeneous fabrication databases. Because the mock finan-
cial database resides on a separate computer system from the DLOG-II VAX which stores
the PROMIS and engineering test databases, the prototype demonstrates that the DRIFS
concept can be implemented in a heterogeneous hardware environment. The window-
oriented menu interface of the DRIFS prototype provides a flexible and convenient method
for defining representations of the local fabrication databases.

The model for DRIFS primitive structures is sufficient for defining representations of
each of the local fabrication databases. In addition to providing homogeneity, the primitive
structures are easily integrated at the user level. The use of key slots and substructures
allows primitive data from separate fabrication databases to be integrated via user level

structures. Additionally, user level structures provide a means of defining specialized

16

ACTIVE-LOT (PROMIS)
NAME: string SINGLETON

COMMENT: string SINGLETON

DEVICE-NAME: string SINGLETON
CUR-PROCESS-NAME: string SINGLETON

CUR-RECIPE-NAME: string SINGLETON
CUR-PROD-AREA-NAME: string SINGLETON

CUR-WORKCENTER-NAME: string SINGLETON
CUR-EQUIP-TYPE-NAME: string SINGLETON
CUR-EQUIP-UNIT- NAME: string SINGLETON

COMPLETION-CLASS: string SINGLETON
STATE: string SINGLETON

STATE-ENTRY-TIME: string SINGLETON
STAGE: string SINGLETON

TRACKING-STAGE: string SINGLETON
CUR-STEP-NUMBER: number SINGLETON
END-STEP-NUMBER: number SINGLETON
EMPL- ID-TRACKIN: string SINGLETON

EMPL-ID-TRACKOUT: string SINGLETON
STEP-COMMENT: string SINGLETON

QUEUE-TIME: string SINGLETON
STEP-START-DATE: string SINGLETON

STEP-END-DATE: string SINGLETON
RELEASE-TIME: string SINGLETON

STEP-START-SIZE: number SINGLETON
MECH-STEP-YIELD: number SINGLETON

NO-OF-DIE-IN: number SINGLETON
DIE-STEP-YIELD: number SINGLETON

CUR-MECH-LOT-YIELD: number SINGLETON
CUR-EFF-DIE-YIELD: number SINGLETON

Figure 6: Description of ACTIVE-LOT primitive level structure.

LOT-TEST-RESULT (TEST-DB)
TESTER: string SINGLETON

TECHNOLOGY: string SINGLETON
DEVICE: string SINGLETON

LOT-NAME: string SINGLETON
TEST-DATE: string SINGLETON
TEST-TI!E: string SINGLETON

TEST-TYPES: string LIST
TEST-RESULTS: TEST-RESULT LIST

Figure 7: Description of LOT-TEST-RESULT primitive level struc-
ture.

17

ENG-ACTIVE-LOT

Slots:
NAME (from ACTIVE-LOT)

COMMENT (from ACTIVE-LOT)
DEVICE-NAME (from ACTIVE-LOT)

CUR-PROCESS-NAME (from ACTIVE-LOT)
CUR-RECIPE-NAME (from ACTIVE-LOT)

CUR-PROD-AREA-NAME (from ACTIVE-LOT)

CUR-WORKCENTER-NAME (from ACTIVE-LOT)
CUR-EQUIP-TYPE-NAME (from ACTIVE-LOT)
CUR-EQUIP-UNIT-NAME (from ACTIVE-LOT)

STATE (from ACTIVE-LOT)

STAGE (from ACTIVE-LOT)
CUR-STEP-NUBER (from ACTIVE-LOT)

STEP-COMMENT (from ACTIVE-LOT)

Key Slots:
NAME (from ACTIVE-LOT)

Sub-structures:
LOT-TEST-RESULT Key Slot: LOT-NAME

Figure 8: Description of ENG-ACTIVE-LOT user level structure.

18

"views" of the fabrication data for certain groups (i.e. engineers, production planners,

* etc.) This was demonstrated in the prototype through the ENG-ACTIVE-LOT and FIN-
DEVICE user level structures, tailored for engineers and production planners, respectively.

While the Explorer LISP machine used to implement DRIFS provides an excellent en-
vironment for rapid prototyping, networking from the Explorer to other computers is slow

and cumbersome. The work-around to the networking problem described in Section 6.3
adds substantial overhead to running PROMIS database queries from DRIFS. This over-
head, combined with the already slow transfer rate (about 500 to 800 bytes/sec) between
the Explorer and the DLOG-II VAX severely limits the performance of PROMIS queries

from DRIFS. Table 2 shows the access times required to retrieve one DEVICE structure
from PROMIS. Note that transferring the PROMIS script file to EXGEFE accounts for

68% of the total access time (due to the networking work-around). Since transfer time for
script files is constant with respect to the number of DEVICE's retrieved from PROMIS,
this percentage become less significant (15%) when a larger number (20) of DEVICE struc-

tures are retrieved (see Table 3).

Transfer Script Execute Script Read DIF Total Access
File to EXGEFE on EXGEFE Output File Time

Trial 1 0:36 0:11 0:11 0:58
Trial 2 0:33 0:07 0:10 0:50

Trial 3 0:34 0:09 0:07 0:50
Trial 4 0:35 0:08 0:07 0:50

Average 0:35 0:09 0:09 0:52
Average % 68% 17% 17%

Table 2: Access times (M:SS) to retrieve one DEVICE structure from

PROMIS.

Transfer Script Execute Script Read DIF Total Access
File to EXGEFE on EXGEFE Output File Time

Trial 1 0:38 1:46 1:55 4:19
Trial 2 0:41 2:19 2:00 5:00
Trial 3 0:40 1:46 1:59 4:25
Trial 4 0:39 1:49 1:58 4:26
Average 0:40 1:55 1:58 4:3
Average O :15% 42% 45

Table 3: Access times (M:SS) to retrieve 20 DEVICE structures from
PROMIS.

Access times for queries to the engineering test and financial database are more ac-

ceptable. Table 4 shows the access times for retrieving test data for an active lot with 15

19

Run TDB Extract [Read TDB Total Access

_ on EXGEFE Output File Time

Trial 1 0:19 0:07 0:26
Trial 2 0:17 0:10 0:27
Trial 3 0:20 0:08 0:28
Trial 4 0:22 0:08 0:30

Avera-ge = 0:20 0:08 0:28
Average 11 T1% 29%

Table 4: Access times (M:SS) to retrieve 15 LOT-TEST-RESULT

structures from the TDB.

1Run TDB Extract Read TDB [Total Access
on EX EFE Output File Time

Trial 1 0:31 0:25 0:56
Trial 2 0:27 0:27 0:54
Trial 3 0:23 0:27 0:50
Trial 4 0:22 0:33 0:55 i
Average 0:26 0:28 0:54

Average % 48% 52%

Table 5: Access times (M:SS) to retrieve 114 LOT-TEST-RESULT
structures from the TDB.

Transfer Script Execute Script Read Ingres Total Access
File to TILDE on TILDE Output File Time

Trial 1 0:04 0:24 0:08 0:36
Trial 2 0:04 0:20 0:12 0:36
Trial 3 0:07 0:21 0:13 0:41
Trial 4 0:04 0:19 0:12 1 _0:35 _

Average 0:05 0:21 0: 11 0:37

Average 13% 57% 30%

Table 6: Access times (M:SS) to retrieve one DEVICE-COST-DATA
structure from the financial database.

20

Transfer Script Execute Script Read Ingres Tota Access

File to TILDE on TILDE Output File Time

Trial 1 0:05 0:32 0:12 0:49
Trial 2 0:04 0:41 0:12 0:55
Trial 3 0:04 0:31 0:12 0:47
Trial 4 0:04 0:25 0:11 0:40

Average 0:04 0:32 0:12 0:48
Average % 08% 67 25%

Table 7: Access times (M:SS) to retrieve 10 DEVICE-COST-DATA
structures from the financial database.

LOT-TEST-RESULT entries. Table 5 shows the access times for retrieving test data for
an active lot with 114 LOT-TEST-RESULT entries. Notice that at 114 entries, reading the
output file over the network is the dominant time factor. Table 6 shows the access times
for retrieving the cost data associated with one device. Table 7 shows the access times for
retrieving the cost data associated with 10 devices. The Ingres execution time increases
from 21 sec. to 32 sec. (an increase of 52%) when the number of DEVICE-COST-DATA
structures retrieved increases from one to 10 (an increase of 900%). These figures indicate
that with small queries, a major portion of the access time is overhead in loading and

executing the Ingres script file.

While DRIFS provides a standard retrieval interface and data model for heterogeneous
fabrication databases, its effectiveness can be limited by the existing interfaces to the in-
dividual local databases and by networking demands. For example, the only interface to
PROMIS data is through menus intended to handle interactive commands from a user con-
sole. Automated interaction with these menus is a cumbersome and error-prone method.
DRIFS could be more effective if each local database provided a retrieval interface de-
signed to handle automated data retrieval. Even without such interfaces, however, DRIFS
can provide an excellent means for off line data retrieval in converting to a homogeneous
fabrication database.

References

I1 J. Smith, P. Bernstin, U. Dayal, N. Goodman, T. Landers, K. Lin, and E. Wong,
"Multibase-integrating hetergeneous distributed database systems," in Proceedings of
the Vational Computer Conference. 1981.

12l T. Landers and R. Rosenberg, "An overview of Multibase," in Proceedings of Inter-

national Symposium of Distributed Databases, (Berlin, West C rmany), 1982.

*31 A. Chan, U. Dayal, and S. Fox, "An Ada-compatible distributed database manage-

ment system," Proceedings of the IEEE., vol. 75, pp. 674-694, May 1987.

21

!41 A, Ferrier and C. Stangret, "Heterogeneity in the distributed database management

system sirius-delta," in Proceedings Eighth International Conference on Very Large

Data Bases, (Mexico City), Sept. 1982.

'51 M. Templeton, D. Brill, S. Dao, E. Lund, P. Ward, A. L. P.Chen, and R. MacGregor,
"Mermaid-a front-end to distributed heterogeneous databases," Proceedings of the
EEE., vol, 75, pp. 695-708, May 1987.

i61 B. Lindsay, "A retrospective of R*: a distributed database management system,"

Proceedings of the IEEE., vol. 75, pp. 668-673, May 1987.

71 M. L. Heytens and R. S. Nikhil, "GESTALT: an expressive database programming

system," December 1987. To be published.

'81 B. Czejdo, M. Rusinkiewiez, and D. Embley, "An approach to schema integration and

query formulation in federated database systems," in Proceedings 3rd International

Conference on Data Engineering, (Los Angeles), Feb. 1987.

191 D. Heimbigner and D. McLeod, "A federated architecture for information manage-

ment," ACM Transactions on Office Information Systems, vol. 3, pp. 253-278, July
1985.

!101 W. Litwin and A. Abdellatif. "An overview of the multi-database manipulation lan-

guage MDSL," Proceedings of the IEEE.. vol. 75, pp. 621-632, May 1987.

I111 PROMIS Standard System Guide. PROMIS Systems Corporation, 4.2 ed., 1987.

112 1 INGRES Reference Manual. Relational Technology, Inc., Berkeley, CA., 3.0, vax/vms

ed., 1984.

'131 M. Ruf, DRIFS: - A Data Retrieval Interface for Integrated Circuit Fabrication Sys-
tems. Master's thesis, Massachusetts Institute of Technology, Cambridge, MA, Jan.

1989.

22

aI

Contents
@1

1 Introduction 1

2 Fabrication Data in Heterogeneous Databases 2

3 Multi-database Techniques 3

4 A Testbed for Integrating Heterogeneous Fabrication Databases 4

4.1 Structure and Content of PROMIS Database 5

4.2 Structure and Content of Engineering Test Database 6

4.3 Structure and Content of Financial Database 7

4.4 Retrieval Mechanism for PROMIS 8

4.5 Retrieval Mechanism for the Engineering Test Database 8

4.6 Retrieval Mechanism for the Financial Database 8

5 Overview of DRIFS 9

5.1 DRIFS Schema Levels 9

5.2 DRIFS Data Structures 9

6 The DRIFS Prototype Implementation 10

6.1 DRIFS Software Environment 10

6.2 Retrieving Primitive Level Data 12

6.3 Retrieving Primitive Structure Data 13

6.4 The User Level Interface 14

6.4.1 Combining PROMIS and Financial Data 14

6.4.2 Combining PROMIS and Engineering Test Data 14

7 Evaluations 16

7.1 Evaluation of DRIFS Prototype Implementation 16

23

